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Abstract

Background—The potential for aerosol transmission of infectious influenza virus (ie, in 

healthcare facilities) is controversial. We constructed a simulated patient examination room that 

contained coughing and breathing manikins to determine whether coughed influenza was 

infectious and assessed the effectiveness of an N95 respirator and surgical mask in blocking 

transmission.

Methods—National Institute for Occupational Safety and Health aerosol samplers collected size-

fractionated aerosols for 60 minutes at the mouth of the breathing manikin, beside the mouth, and 

at 3 other locations in the room. Total recovered virus was quantitated by quantitative polymerase 

chain reaction and infectivity was determined by the viral plaque assay and an enhanced 

infectivity assay.

Results—Infectious influenza was recovered in all aerosol fractions (5.0% in >4 µm 

aerodynamic diameter, 75.5% in 1–4 µm, and 19.5% in <1 µm; n = 5). Tightly sealing a mask to 

the face blocked entry of 94.5% of total virus and 94.8% of infectious virus (n = 3). A tightly 

sealed respirator blocked 99.8% of total virus and 99.6% of infectious virus (n = 3). A poorly 

fitted respirator blocked 64.5% of total virus and 66.5% of infectious virus (n = 3). A mask 
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documented to be loosely fitting by a PortaCount fit tester, to simulate how masks are worn by 

healthcare workers, blocked entry of 68.5% of total virus and 56.6% of infectious virus (n = 2).

Conclusions—These results support a role for aerosol transmission and represent the first 

reported laboratory study of the efficacy of masks and respirators in blocking inhalation of 

influenza in aerosols. The results indicate that a poorly fitted respirator performs no better than a 

loosely fitting mask.

Current evidence indicates that influenza can be transmitted by direct and indirect contact, 

droplet spray, and aerosol particles in the inhalable size range (≤10 µm) [1]. Transmission 

via respirable particles (≤4 µm), which can remain airborne for long periods and be inhaled 

into the lung alveoli, has been particularly controversial [2–5]. As early as 1941, aerosol 

transmission was demonstrated between ferrets that were separated by up to 2.75 m [6]. 

More recent studies in ferrets [7–9] and guinea pigs [10–14] support airborne transmission 

(ie, by aerosol and/or large droplets and droplet nuclei) over considerably shorter distances 

(5–107 cm), although this transmission was strain dependent [9, 10, 14, 15]. Findings of 

studies in which influenza was administered experimentally by aerosol or intranasal 

inoculation provide indirect evidence that transmission of influenza in communities can 

occur by the aerosol route [16–18].

Transmission of influenza on respirable particles potentially generated during coughing, 

sneezing, and breathing is a concern in healthcare facilities because these particles may 

remain airborne for prolonged periods. Several studies have detected influenza RNA in the 

exhaled breath and coughs of patients with influenza [19–23]. In 1 study, patients shed about 

33 viral copies/min in aerosol particles ≥5 µm and 187 viral copies/min in particles <5 µm, 

and infectious virus was detected in the breath from 2 patients [22]. In another study, cough 

aerosols from 81% of the influenza-positive patients contained influenza RNA and 65% of 

the viral RNA was contained in particles <4 µm [23]. Two clinical studies showed that the 

highest concentrations of influenza RNA were detected in locations where the number of 

patients with influenza was highest and that 42%–53% of the viral RNA was contained in 

particles ≤4 µm [24, 25].

If it were known that infectious influenza virus is present on these small particles, the risk of 

infection could be properly assessed, and appropriate guidelines for prevention could then be 

established. To address this issue, a patient examination room containing a coughing 

manikin that “coughs” influenza virus into the room to simulate a patient with influenza and 

a breathing manikin to simulate a healthcare worker was constructed. National Institute for 

Occupational Safety and Health (NIOSH) aerosol samplers positioned within the breathing 

manikin and at various locations throughout the room were used to collect and size-

fractionate the airborne particles. In this study, we show that infectious virus is present on a 

range of collected particles and we examine the effectiveness of surgical masks and N95 

respirators in blocking virus inhalation.
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MATERIALS AND METHODS

Cells and Virus

Madin-Darby canine kidney (MDCK) cells (American Type Culture Collection [ATCC] 

CCL-34) and influenza strain A/WS/33 (H1N1, ATCC VR-825, lot 58023547 at 1.58 × 108 

50% chicken embryo infectious dose [CEID50]/mL, and lot 58772128 at 2.8 × 106 

CEID50/mL) were purchased from the ATCC and maintained as described elsewhere [26].

Bioaerosol Samplers

NIOSH samplers, which collect and size-fractionate aerosols into 3 fractions (>4-, 1–4-, and 

<1-µm aerodynamic diameters), were used to collect influenza-containing aerosols [24, 27].

Extraction of Virus From Surgical Gloves, Masks, and Respirators

Virus was eluted by overnight incubation at 4°C in 1 mL of supplemented [26] Hank’s 

balanced salt solution.

Real-Time Quantitative Polymerase Chain Reaction

Matrix gene copies were detected by real-time quantitative polymerase chain reaction 

analysis, as described elsewhere [26].

Viral Plaque Assay

For viral plaque analysis, aerosol samples containing infectious influenza were inoculated 

onto a confluent lawn of MDCK cells and plaque-forming units were calculated, as 

described elsewhere [26].

Viral Replication Assay

To enhance the ability to detect infectious virus, the copy number of infectious virus was 

amplified before detection by a modified 50% tissue culture infectious dose (TCID50) assay, 

that is, the viral replication assay (VRA), as described elsewhere [26].

Aerosol Exposure Simulation Chamber

The simulated examination room was 2.75 m × 2.75 m × 2.40 m and included a high-

efficiency particulate air filter and a UV lamp [28] to disinfect the room. Influenza was 

aerosolized with an Aeroneb 2.5–4-µm micropump nebulizer (Aerogen), as described 

elsewhere [26], and loaded into the cough simulator remotely for a total of 5 coughs at 

approximately 2-minute intervals, also as described elsewhere [28]. The coughing simulator 

uses a metal bellows driven by a computer-controlled linear motor (Model STA2506; 

Copley Controls) to reproduce the flow and aerosol pattern of a human cough. The cough 

had a 4.2-L volume with a peak flow of 16.9 L/s and a mean flow of 5.28 L/s. The digital 

breathing simulator (Warwick Technologies) was equipped with a standard medium-sized 

head form (Sheffield model 189003; ISI). The breathing waveform was sinusoidal with a 

flow rate of 32 L/min (ISO standard for an adult 1.88 m tall with a mass of 85 kg engaged in 

moderate work) [29]. The coughing and breathing simulators were synchronized so that each 

cough was initiated at the start of an inhalation.
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A surgical mask (Kimberly Clark 47625) or N95 respirator (3MM1860) was either tightly 

sealed over the mouth of the breathing simulator using silicone sealant or attached using the 

tie straps or elastic headbands of the mask or respirator. The fit factor of each mask or 

respirator was measured using a standard respirator fit-testing device (Model 8038 

PortaCount Pro Plus; TSI). The fit factor is defined as 1/fraction of particles that pass 

through the mask.

RESULTS

Detection of Infectious Influenza on Aerosolized Particles

To determine whether infectious influenza could be recovered from airborne particles, 

influenza expelled by the coughing simulator was collected for 60 minutes by 5 NIOSH 

samplers. The samplers drew aerosol samples from a port located approximately 1 mm 

above the mouth (through mouth) of the breathing simulator, 10 cm to the right of the mouth 

(beside mouth), and at 3 other positions (P1, P2, P3) within the simulation chamber (Figure 

1). Approximately 3.49 × 106 total virus was coughed into the simulation chamber (202 

virus per liter of chamber air). The average total recovered virus per liter of collected air 

from each of the 5 samplers in 5 independent experiments was 1.35 × 104 (standard error, 

1.74 × 103) (Figure 2A). Most of the virus was recovered in the 1–4-µm aerosol fraction 

(75.5%) and <1-µm fraction (19.5%); the remainder was detected in the >4-µm fraction 

(5.0%) (Figure 2A). Infectious influenza, assessed by the viral plaque analysis, was 

recovered in all 3 fractions and from all NIOSH samplers regardless of their position within 

the simulation chamber (Figure 2B). The presence of infectious influenza was confirmed 

using an enhanced infectivity assay, the VRA (Figure 2C). There was no statistically 

significant difference in the percentages of virus that remained infectious in the 3 fractions 

or the 5 samplers.

Tightly Fitted (Sealed) Surgical Masks and N95 Respirators and Exposure to Airborne 
Infectious Influenza

To examine the extent to which personal protective equipment (PPE) can effectively protect 

against aerosol exposure to influenza, surgical masks and N95 respirators were sealed to the 

breathing manikin’s face to prevent aerosols from circumventing the PPE. Fit factors were 

determined to be 135 for the surgical masks and 200+ for the N95 respirators (for the sealed 

PPE, the fit factor measurement reflects the penetration of particles through the PPE, 

because face seal leakage was prevented). The total virus collected through the manikin’s 

mouth by a NIOSH sampler compared with that collected beside the mouth revealed that 

99.8% was blocked from entering the mouth by a tightly fitted respirator (Figure 3A). 

Furthermore, ≥99.5% of viral entry was blocked for all aerosol fractions. Similarly, 99.6% 

of the infectious virus was blocked from entering the mouth, with ≥99.4% of virus from 

each aerosol fraction blocked from entry (Figure 3B). The VRA confirmed these results and 

showed that 99.8% of the total infectious virus was blocked by the sealed respirator (Figure 

3C).

A tightly fitted mask blocked 94.5% of the total virus and ≥91.8% was blocked regardless of 

which aerosol fraction was tested (Figure 4A). Similarly, 94.8% of the total infectious virus 
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was blocked, with ≥92.7% being blocked regardless of which aerosol fraction was tested 

(Figure 4B). The VRA showed that 92.9% of the total infectious virus was blocked by the 

sealed mask (Figure 4C).

Loosely Fitting (Unsealed) Surgical Masks and Poorly Fitting (Unsealed) N95 Respirators 
and Exposure to Airborne Infectious Influenza

Surgical masks typically have low fit factors owing to gaps and leaks between the mask and 

face. N95 respirators that are poorly fitted or improperly worn can also have a dramatically 

reduced fit factor [30–32]. To simulate low fit factors, masks and respirators were attached 

to the face using the tie strings or elastic headbands but without using sealant. Fit factors 

ranged from 2.3 to 4.6 (100 is considered passing). The total virus collected through the 

manikin’s mouth compared with that collected by a sampler beside the mouth showed that 

69.9% was blocked from entering the mouth by a poorly fitting respirator (Figure 5A). 

Furthermore, ≥64.5% of virus from all 3 aerosol fractions was blocked from entering. 

Approximately 66.5% of the total infectious virus was blocked by the unsealed, poorly 

fitting respirator (≥59.2% of the blocked infectious virus was in the ≤4 µm fractions; Figure 

5B). Similarly, the VRA showed that 66.5% of the total infectious virus was blocked from 

entry (Figure 5C).

Similarly, a poorly fitting mask blocked 68.9% of the total virus (Figure 6A), and entry of 

56.6% of the total infectious virus was blocked (≥51.2% of the blocked infectious virus was 

in the ≤4-µm fractions) (Figure 6B). In contrast, the VRA indicated that only 11.6% of the 

total infectious virus was blocked (Figure 6C).

Recovery of Infectious Influenza Virus From PPE

Significant amounts of influenza were recovered from a 25-mm–diameter coupon punched 

out from the center of masks and respirators worn by the breathing simulator (Table 1). The 

amount of virus recovered on the mask and respirator coupons were 5.6%–5.8% and 8.2%–

11.0%, respectively, of the total amount recovered by NIOSH samplers positioned 10 cm 

beside the manikin’s mouth. Infectious influenza was present on all mask and respirator 

coupons, regardless of whether or not they were sealed to the manikin’s head, and infectivity 

of the recovered virus was reduced approximately 4–8 fold from that of the viral preparation 

before aerosolization.

The location of virus within the coupons was also assessed. Coupons of 19-mm diameter 

were punched out from the center and side sections of a sealed mask and respirator, and the 

3 layers of each coupon (outer water-repellent cover, middle filtering layer, and inner 

hydrophilic lining) were then separately processed. Most of the virus was located in the 

middle and outer layers of each coupon (Table 2). The inner layers of the coupons from the 

center and side sections of the mask contained only 2.3% and 0.8%, respectively, of the total 

virus recovered. The inner layers of the coupons from the center and side sections of the 

respirator contained only 0.4% and 0.2%, respectively, of the total virus recovered.

The tips (~20 mm) of surgical gloves were attached to the manikin’s forehead and to NIOSH 

samplers located at positions P1, P2, and P3 during 3 simulated examinations (Figure 1). 
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Total influenza was recovered from the glove tips placed at all positions, and infectious 

virus was recovered from glove tips located on the manikin’s forehead and at P1 (Table 3).

DISCUSSION

To maintain the availability of healthcare workers during an influenza pandemic, it is 

imperative to assess the nature of the risk of transmission in healthcare settings, such as 

during patient examinations, and to develop appropriate mitigation measures. To address 

this, Lindsley et al [28] constructed a simulated examination room and showed that coughed 

aerosol particles of potassium chloride disperse within minutes throughout the room. The 

present study with influenza supports that finding and suggests that anyone present in a 

room with a patient who has influenza might be at risk of exposure.

Before aerosolization of the virus in the 16 simulated exposure experiments, an average 

6.3% was infectious (the stock presumably contained >93% defective [noninfectious] virus) 

and 2.2% of the virus remained infectious after collection by the NIOSH samplers. 

However, the final infectivity varied considerably among the individual experiments. As 

reported by Cao et al [33], some of the losses were probably due to the use of the NIOSH 

sampler, which fractionates aerosolized virus on the dry walls of a collection tube and 

Teflon filter. In addition, humidity may have influenced the survival of infectious virus; 2 

studies reported that maximal stability of influenza occurs at 20%–40% relative humidity, 

and minimal stability at 50% relative humidity [11, 34]. In our study, the relative humidity 

in the simulation chamber was 44%–63%.

In a real-world examination room, the actual number of aerosolized viral particles that a 

healthcare worker could potentially inhale would be dependent on the number of viral copies 

shed by infected individuals and the airflow in the room. In 1 study, naturally infected 

participants shed 33 copies/min in aerosol particles ≥5 µm and 187 viral copies/min in 

particles <5 µm [22]. Assuming an examination room is occupied by ≥1 infected patients for 

60 minutes, up to 1.12 × 104 viral particles <5 µm in size may be shed, and 1.23 × 103 viral 

particles could potentially be inhaled by a healthcare worker. Teunis et al [35] developed a 

dose-response model for infectivity and pathogenicity of influenza A using 3 clinical studies 

in which influenza was administered via aerosol and 12 studies in which it was administered 

through intranasal droplet inoculation. They concluded that the probabilities of infection by 

either aerosol or droplet transmission are approximately equal and that the probability of 

infection is significant (Pinf = .2–.4) at low doses (101–2 TCID50 infectious units). They also 

noted that most of the freshly shed viruses are potentially infectious and that environmental 

conditions may rapidly decrease the fraction of infectious viruses.

Two systematic reviews on the use of surgical masks and N95 respirators came to different 

conclusions. One review was based primarily on data from severe acute respiratory 

syndrome outbreaks, and these authors concluded that interventions, including the use of 

masks or respirators, could reduce the spread of respiratory infections [36]. The other review 

found few data showing that masks are effective against influenza [37]. Similarly, a 

Canadian prospective randomized controlled trial of respirator and mask use by nurses 

found that use of a mask resulted in similar rates of laboratory-confirmed influenza, mostly 
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documented by serological changes [38]. A recent large cluster randomized clinical trial 

conducted in China, where mask acceptance is high, compared the effectiveness of masks 

and respirators (fit tested and non–fit tested) in protecting healthcare workers from 

respiratory infection [39]. Their conclusion was that a benefit of respirators was suggested 

but would need to be confirmed by a larger trial because the study was underpowered. Rates 

of fit test failure were very low, perhaps accounting for the study’s finding that fit testing did 

not improve the efficacy of respirators. Thus, data from clinical settings has thus far failed to 

resolve uncertainty about the relative importance of aerosol transmission and the necessity 

for use of N95 respirators to prevent it.

In our study, we evaluated the effectiveness of surgical masks and N95 respirators when the 

masks and respirators were sealed to a manikin’s face or unsealed to a manikin’s face and 

documented to fit poorly (approximating how masks normally perform and how poorly 

fitting respirators might perform in the field). Sealed masks were not as effective as sealed 

respirators at blocking total influenza (94.5% vs 99.8% blocked) or at blocking infectious 

virus (95.8% vs 99.6% blocked). Rengasamy et al [40] examined the filtration efficiency of 

5 models of masks using a standard filter tester and found penetration values ranging from 

<0.2% to 63% at 30 L/min. Our results were comparable to those for the mid-range masks in 

their study. Because filtration efficiencies of masks vary considerably, protection afforded 

by even a sealed mask would be further reduced. Unsealed masks and unsealed, poorly 

fitting respirators were not effective at blocking total influenza virus (68.5% vs 64.5% 

blocked) or infectious virus (56.6% vs 66.5%).

This result shows that gaps between the wearer’s face and the PPE can have a tremendous 

impact on the protection offered. This is especially applicable for masks, which are not 

designed to seal to the wearer’s face. Typical fit factors from volunteers wearing these types 

of masks have been reported to range from 2.5 to 9.6 [29, 30]. In contrast, respirators are 

required to have fit factors ≥100, and measurements from volunteers wearing properly fitted 

respirators have shown much higher factors than from those wearing masks [30–32]. In our 

study, the fit factors for sealed respirators and masks were 200+ and 135, respectively, 

whereas unsealed masks and respirators had fit factors of 2.3 and 4.6. Thus, the sealed 

respirators obtained fit factors similar to well-fitting respirators, and the unsealed masks 

obtained fit factors comparable to those on human subjects during realistic use conditions. 

Therefore, our results support the use of properly fitted N95 respirators for maximal 

protection against infectious airborne influenza.

Finally, 2 important notes about our results should be made. First, the high fit factors seen 

with the sealed surgical masks in our study should not be interpreted to mean that surgical 

masks can be depended upon to provide respiratory protection. The filtration capacity of 

surgical masks varies tremendously from model to model, and large face seal leaks, which 

admit substantial amounts of aerosol particles, are normal even when surgical masks are tied 

tightly to the face. Second, the fit factor of respiratory PPE represents the protection offered 

by the PPE under ideal test conditions. In industrial hygiene, a distinction is made between 

this and the “assigned protection factor,” which is the amount of protection that would be 

expected from the PPE during real-world usage and can be considerably lower. For PPE to 
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provide the needed protection to workers, they must be part of a respiratory protection 

program that includes training and fit testing of workers for the PPE they will use.
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Figure 1. 
Three-dimensional view of the aerosol exposure chamber. National Institute for 

Occupational Safety and Health samplers collected aerosols through the mouth (depicted as 

black oval in breathing mannequin's head), 10 cm beside the mouth of the breathing 

simulator, and in 3 other positions (P1, P2, P3), as shown. The mouths of the coughing and 

breathing simulators and sampler inlets at P1, P2, and P3 were located 152 cm above the 

floor (approximate height of a sitting patient and healthcare worker). For 3 experiments, 

fingertips from medical gloves were also placed on the manikin's forehead and alongside 3 

of the aerosol samplers. All dimensions adjacent to white arrows within chamber are in 

centimeters.

Noti et al. Page 11

Clin Infect Dis. Author manuscript; available in PMC 2015 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Detection of infectious influenza on aerosolized particles. National Institute for 

Occupational Safety and Health (NIOSH) samplers drew aerosol samples from a port 

located ~1 mm above the mouth (through mouth) of the breathing simulator, 10 cm to the 

right of the mouth (beside mouth), and at 3 other positions (P1, P2, P3) within the 

environmental chamber. The amount of influenza virus detected in each fraction (>4, 1–4, 

and <1 µm) collected by the NIOSH sampler per liter of air collected is shown. A, B, 

Amounts of total virus (infectious and noninfectious) collected in each fraction was 
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determined by quantification of the matrix gene by quantitative polymerase chain reaction 

(qPCR) (A) and by the plaque-forming unit assay (B). C, Viral replication assay (VRA) 

demonstrated the amount of infectious virus collected after amplification in Madin-Darby 

canine kidney cells to increase the sensitivity of detection. Data are means ± standard errors 

(n = 5).
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Figure 3. 
Tightly fitting (sealed) N95 respirators efficiently block exposure to airborne infectious 

influenza. An N95 respirator was sealed over the mouth of the breathing mannequin with 

silicone caulk. Amounts of infectious and noninfectious virus collected are as described for 

Figure 2. Data are means ± standard errors (n = 3); qPCR, quantitative polymerase chain 

reaction; VRA, viral replication assay.
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Figure 4. 
Tightly fitting (sealed) surgical masks efficiently block exposure to airborne infectious 

influenza. A surgical mask was sealed over the mouth of the breathing manikin with silicone 

caulk. The amount of infectious and noninfectious virus collected is as described for Figure 

2. Data are means ± standard errors (n = 3); qPCR, quantitative polymerase chain reaction; 

VRA, viral replication assay.
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Figure 5. 
Poorly fitting (unsealed) N95 respirators are less efficient at blocking exposure to airborne 

infectious influenza. An N95 respirator was fitted over the mouth of the breathing manikin 

with the mask's tie straps. The amount of infectious and noninfectious virus collected is as 

described for Figure 2. Data are means ± standard errors (n = 3); qPCR, quantitative 

polymerase chain reaction; VRA, viral replication assay.
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Figure 6. 
Loosely fitting (unsealed) surgical masks are less efficient at blocking exposure to airborne 

infectious influenza. A surgical mask was fitted over the mouth of the breathing manikin 

with the mask's tie straps. The amount of infectious and noninfectious virus collected is as 

described for Figure 2. Data are means ± standard errors (n = 2); qPCR, quantitative 

polymerase chain reaction; VRA, viral replication assay.
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Table 3

Recovery of Infectious Virus From Surgical Gloves

Glove Location Within
Environmental Chamber

Virus on Glove Tip Infectious Virus, %

Total Matrix Copies Total PFUs Before Aerosolization On Glove

On forehead 2.93 × 103 ± 2.27 × 103 2.5 ± 2.0 9.2 ± 2.1 0.1 ± 0.1

P1 6.58 × 102 ± 1.54 × 102 6.3 ± 5.1 9.2 ± 2.1 2.7 ± 1.1

P2 3.13 × 103 ± 2.00 × 103 0 9.2 ± 2.1 0

P3 3.08 × 103 ± 2.16 × 103 0 9.2 ± 2.1 0

The ~20-mm tip of the index finger of a surgical glove was assayed for the presence of influenza virus. Data are means ± standard errors of 3 

experiments. A total of 1.18 × 104 ± 1.73 × 103 matrix copies per liter of air were collected from a National Institute for Occupational Safety and 
Health sampler positioned beside the mouth.

Abbreviations: P1, P2, P3, position 1, position 2, position 3; PFUs, plaque-forming units.
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